MutL homolog 1 contributes to temozolomide-induced autophagy via ataxia-telangiectasia mutated in glioma.

نویسندگان

  • Yuhui Zou
  • Qiong Wang
  • Weimin Wang
چکیده

In the present study, mutL homolog 1 (MLH1) small interfering (si)RNA, KU‑55933, an ataxia‑telangiectasia mutated (ATM) inhibitor, and compound C, an adenosine monophosphate‑activated protein kinase (AMPK) inhibitor, were used to investigate the mechanisms underlying temozolomide (TMZ)‑induced autophagy and to determine the role of MLH1 and ATM in autophagy. MLH1 siRNA and KU‑55933 inhibited the phosphorylation of AMPK and ULK1 and reduced the levels of autophagy. MLH1 siRNA inhibited the phosphorylation of ATM and attenuated TMZ cytotoxicity, whereas the inhibition of ATM‑AMPK augmented TMZ cytotoxicity in inherently TMZ‑sensitive glioma cells. Therefore, TMZ induced autophagy via the ATM‑AMPK pathways and the activation of ATM‑AMPK was MLH1‑dependent. The inhibition of ATM‑AMPK enhanced TMZ cytotoxicity in inherently TMZ‑sensitive glioma cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Temozolomide induces autophagy via ATM‑AMPK‑ULK1 pathways in glioma.

Autophagy is a cytoprotective process, which occurs following temozolomide (TMZ) treatment, and contributes to glioma chemoresistance and TMZ treatment failure. However, the molecular mechanisms by which TMZ induces autophagy are largely unknown. In the current study, the ataxia‑telangiectasia mutated (ATM) inhibitor KU‑55933, adenosine monophosphate‑activated protein kinase (AMPK) inhibitor co...

متن کامل

Cancer Therapeutics Insights Contribution of ATM and ATR to the Resistance of Glioblastoma and Malignant Melanoma Cells to the Methylating Anticancer Drug Temozolomide

The major cytotoxic DNA adduct induced by temozolomide and other methylating agents used in malignant glioma and metastasized melanoma therapy is O-methylguanine (O-MeG). This primary DNA damage is converted by mismatch repair into secondary lesions, which block replication and in turn induce DNA double-strand breaks that trigger the DNA damage response (DDR). Key upstream players in the DDR ar...

متن کامل

Contribution of ATM and ATR to the resistance of glioblastoma and malignant melanoma cells to the methylating anticancer drug temozolomide.

The major cytotoxic DNA adduct induced by temozolomide and other methylating agents used in malignant glioma and metastasized melanoma therapy is O(6)-methylguanine (O(6)-MeG). This primary DNA damage is converted by mismatch repair into secondary lesions, which block replication and in turn induce DNA double-strand breaks that trigger the DNA damage response (DDR). Key upstream players in the ...

متن کامل

MicroRNA203a suppresses glioma tumorigenesis through an ATM-dependent interferon response pathway

Glioblastoma (GBM) is a deadly and incurable brain tumor. Although microRNAs (miRNAs) play critical roles in regulating the cancer cell phenotype, the underlying mechanisms of how they regulate tumorigenesis are incompletely understood. We previously showed that miR-203a is expressed at relatively low levels in GBM patients, and ectopic miR-203a expression in GBM cell lines inhibited cell proli...

متن کامل

Recently emerging signaling landscape of ataxia-telangiectasia mutated (ATM) kinase.

Research over the years has progressively and sequentially provided near complete resolution of regulators of the DNA repair pathways which are so important for cancer prevention. Ataxia-telangiectasia mutated kinase (ATM), a high-molecular-weight PI3K-family kinase has emerged as a master regulator of DNA damage signaling and extensive cross-talk between ATM and downstream proteins forms an in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular medicine reports

دوره 11 6  شماره 

صفحات  -

تاریخ انتشار 2015